Change in Temperature $=\mathbf{f}$ (time)

Let's try to create another temperature model. Forensic experts and medical examiners know that the human body, after death, loses or gains about 6.106\%/hour of the difference between normal body temperature, $98.6^{\circ} \mathrm{F}$, and the temperature of the surrounding air. Imagine you're a medical examiner who has just been called to a scene where a murder victim's body has been placed in a sauna at $160^{\circ} \mathrm{F}$. Model body temperature as a function of time. Extrapolate to estimate body temperature after 18 hours. Use the inverse function to estimate how long ago the murder was committed if the body temperature is $142.5^{\circ} \mathrm{F}$.

Note: You will want to use the fraction of heat the body retains not loses. You will want to use either the form difference difference*fraction ${ }^{\wedge}$ t or the form difference * $\left(1-\right.$ fraction $\left.{ }^{\wedge} \mathrm{t}\right)$ and to be sure to add $98.6^{\circ} \mathrm{F}$ that is the temperature of the body at death.

